1 ENERGY STORAGE

- 1.1 A water well is in a location with a mean daily solar radiation of 4.8 hours of sun. The PV powered pump is able to produce 16m³ /day from a depth of 18m.
 - a) Determine the required capacity of the batteries for autonomy of 3 days.
 - b) Determine the required installed PV power.
- 1.2 How much water would have to be pumped to a tank raised 3 meters from the ground in order to be able to recover 1kWh of electricity? [Assume 100% conversion efficiency.]

2 MODULE TEMPERATURE

- 2.1 A module datasheet states the following module parameters: $I_{sc} = 3A$; $V_{oc} = 20.4V$; $P_{max} = 45.9W$; NOCT = 43°C. Determine the parameters (I_{sc} , V_{oc} , FF, P_{max}) of a module formed by 34 solar cells under the following operating conditions: $G = 700W/m^2$; $T_a = 34$ °C.
- 2.2 A PV module is found to operate at 60° C when $T_a = 30^{\circ}$ C and G = 980W/m². Determine the NOCT of the module.
- 2.3 Determine the variation with ambient temperature (between -25°C and +75°C) of the power of a module (under standard 1000W/m²) with 36 Si cells in series each with $I_m = 5.85A$ and $V_m = 0.5V$ at 25°C and a NOCT=45°C.

3 SIZING A GRID CONNECTED SYSTEM

Modules as those described in Table 1 are to be connected to an inverter with the specifications presented in Table 2. The modules' temperature range is -10 to 40°C.

Table 1: Module specification

Voc	30.2 V
Vm	24 V
Isc	8.54 A
lm	7.71 A
T coeff P	-0.485 %/°C
T coeff V	-0.104 V/°C

Table 2: Inverter specification

Max DC power	3200 W
Max DC voltage	600 V
MPP voltage range	268 - 480 V
DC nominal voltage	350 V
Min DC voltage	268 V
Max input DC current	12 A
Max output AC current	15 A

- a) Determine the module voltage range.
- b) Determine the minimum number of modules in a string, considering a 2% drop loss in the DC cables and a 10% safety margin for the minimum inverter input voltage.

Solar energy | Problem Sheet 3 | Questions

- c) Determine the maximum number of modules in a string, considering a 5% safety margin for the maximum inverter input voltage.
- d) Determine the number of strings by matching the current specifications (neglecting temperature effects).
- e) Compare the array DC power of the configuration specified in the previous questions to the max DC power of the inverter.

4 HOMEWORK

Design a self-consumption PV system for a building in Bairro da Tabaqueira using PVSYST.

Notes: Assume that each building has 4 x 2 apartments. The typical (normalized) load profile is available here: https://www.e-redes.pt/pt-pt/clientes-e-parceiros/comercializadores/perfis-de-consumo [assume a total demand of 2000 kWh/year/household]